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The authors carry out a comparative analysis of the methods of variational calculus and main asymp-
totic optimization as applied to the solution of the problem of optimum control of metal heating by
using the scaling-minimization criterion.

In earlier works [1, 2], a solution is given for the problem of selecting an optimum regime of heating
metal by the minimum of fuel consumption using the method of main asymptotic optimization. To develop
methods of optimum control and with the aim of selecting a standard method, in the present work we solved
the optimization problem using the criterion of scaling minimization. It should be noted that, for these prob-
lems, various mathematical approaches are widely used: the method of investigation of functions of classical
analysis, the method of variational calculus, dynamic programming, Pontryagin’s principle of maximum, the
methods of linear and nonlinear programming, and the method of penalty functions ([3-7], etc.). The selection
of the method is conditioned by the mathematical description of the object of optimization: the mathematical
model, the goal function, imposed limitations, etc. In particular, in [3] a solution is given for the problem of
optimum control of heating thermally large bodies of various geometries by the minimum of scaling based on
the method of classical variational calculus.

It should be noted that the optimum solution obtained [3] has some drawbacks: first, it is approximate
and, consequently, does not give an exact result; second, it is obtained from the Euler equation, which, gener-
ally speaking, is a necessary condition for the extremum of the functional; third, the Euler equation has no
unique solution (therefore, it is not clear what extremum should be selected); fourth, as is noted in [3], it is
difficult to control heating by the surface temperature. It is suggested in [3] that the last drawback be overcome
by determining, from equality of the heat fluxes (from the conditions of external and internal heat exchange),
the time dependence of the temperature of the heating gases.

We suggest solving the problem of heating with minimum scaling based on the method of main opti-
mization. Use of this method opens up the possibility of dividing the problem of optimum control into simpler
subproblems. In a system with an excess time for functioning, the optimum trajectory strives to be in the re-
gion of phase space where this is advantageous from the viewpoint of the optimality condition. The trajectory
will consist of three portions: attainment of the main regime; the main regime; receding from it. Here, the
central (main) portion of the trajectory is determined by the asymptotic properties of optimum trajectories,
while the extreme portions are determined by the boundary conditions.

The mathematical formulation of the problem of heating metal using the minimum of scaling has the
form [3]

dTm

dFo
 = 

k

k3 − 1
 (Tsur − Tm) ; (1)

Journal of Engineering Physics and Thermophysics, Vol. 73, No. 6, 2000

1062-0125/00/7306-1278$25.00  2001 Kluwer Academic/Plenum Publishers1278

aBelarusian State Polytechnic Academy, Minsk, Belarus; bNational Metallurgical Academy of Ukraine,
Dnepropetrovsk, Ukraine. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 73, No. 6, pp. 1320-1323, No-
vember−December, 2000. Original article submitted April 13, 2000.



Tm (0) = T0 ;   Tm (Fof) = Tm.f ; (2)

W1 ⁄ h (Fof) =  ∫ 
0

Fof

 exp 




− β
Tsur (Fo)




 dFo → min

Tsur

 . (3)

To take into account the above-described drawbacks of the method of variational calculus, we supple-
mented the mathematical model with an equation that connects the surface temperature with the temperature of
the smoke (heating gases):

dTsur

dFo
 = µ (Ts − Tsur) (4)

subject to a boundary condition of the form

Tsur (Fof) = Tsur.f . (5)

This gives the possibility of influencing the surface temperature by changing the temperature of the furnace.
As a result, the problem of optimum control of metal heating from the initial temperature to a pre-

scribed one can be formulated as follows. It is required that the temperature of the stack gases Ts be selected
from a certain range Ts1 ≤ Ts ≤ Ts2, which is determined by the technological operating mode of the furnace, in

Fig. 1. Dynamics of the change in the temperature of the heating gases (1,
5) and the surface (2, 6) and center (3, 7) of the metal and in the magni-
tude of the relative burning loss (4, 8) in heating classically shaped bodies
calculated by the method of variational calculus (solid curves) and main
optimization (asterisked curves), respectively: a) sphere; b) cylinder; c)
plate. T, K.
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such a manner that the minimum value of functional (3) is provided for solutions of system (1) and (4) that
satisfy conditions (2) and (5).

Using the method of main asymptotic optimization, it was proved earlier [8] that the optimum change
in the furnace temperature is provided by two-stage heating:

Ts (Fo) = 










Ts1   for  0 ≤ Fo ≤ Fo∗  ,

Ts2   for  Fo∗  < Fo ≤ Fof

 
.

The instant of switching Fo∗  is selected so as to provide metal heating to the required temperature with
a prescribed accuracy:

_T (Fof) − Tm.f_ ≤ ε .

We developed software to compare two optimum trajectories obtained on the basis of variational cal-
culus [3] and the method of main optimization.

For a numerical experiment, the following initial data were taken: T0 = 273 K; Tm.f = 1498 K; h = 0.7;
β = 16570 K; Bi = 0.78; the Fourier number is Fo = 3.10 for a sphere, 5.79 for a cylinder, and 15.44 for a
plate.

In heating according to the optimum regime by the obtained method of variational calculus the relative
burning loss of metal is: W = 0.125⋅10−3 for a sphere, 0.192⋅10−3 for a cylinder, and 0.389⋅10−3 for a plate. In
the case of calculations by the method of main optimization, we have 0.119⋅10−3 for a sphere, 0.181⋅10−3 for a
cylinder, and 0.382⋅10−3 for a plate.

Graphs of the change in the temperature of the heating gases, the surface, and the metal and in the
magnitude of the relative burning loss of the metal in heating bodies of various geometries obtained by differ-
ent methods of optimization are given in Fig. 1.

An analysis of the results showed that the best effect is attained by the method of main optimization.
It is obvious that in all cases a regime of change in the surface and furnace temperatures is obtained that
provides lower oxidation than was suggested in [3]: the relative burning loss of metal turned out to be 4.8%
less in heating a sphere, 5.7% less in heating a cylinder, and 1.8% less in heating a plate.

Thus, the analysis of the results proved the efficiency of the proposed method of main optimization in
comparison with the method of variational calculus. It should be noted that earlier in [8] the advantage of the
developed method in comparison with solution of the problem of optimization by the principle of maximum
was shown.

Fig. 2. Dynamics of the change in the temperature fields and the scaling
in heating an ingot of dimensions 0.125 × 0.125 m according to the base
(1) and optimum (2) regimes. τ, h; ω, kg/m2.
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Subsequently, the procedure for determining the optimum temperature regime was used to refine the
regimes of heating high-carbon steels (70 K) in the heating furnace of the 320/150 mill of the Belarusian Met-
allurgical Works. The calculation results are given in Fig. 2. It is obvious that the amount of scaling deceased
from 3.4 (the base regime) to 2.4 kg/m2 (the optimum regime). To realize a theoretical two-stage graph of
heating under practical conditions, the regime was transformed to a four-stage one. The optimum regimes de-
veloped underwent laboratory and industrial testing and were incorporated at the Belarusian Metallurgical
Works.

NOTATION

T, temperature; Tm, temperature of the metal; Tsur, surface temperature; Tsur.f, final temperature of the
surface; Tc, temperature of the center; T0, initial temperature of the metal; Tm.f, final temperature of the metal;
Ts, temperature of the smoke; Ts1 and Ts2, minimum and maximum possible temperatures of the gases in the
furnace; τ, time; k = k1k2k3, coefficient of inertia of the body (k = 6 for a plate, k = 8 for a cylinder, and k =
10 for a sphere); k1, coefficient of mass loading (k1 = 1 for a plate, k1 = 2 for a cylinder, and k1 = 3 for a
sphere); k2, coefficient of averaging of the heat-flux density over the body cross section (k2 = 2 for all the
bodies considered); k3 = (k1 + 2)/k1, coefficient of the mass mean temperature (k3 = 3 for a plate, k3 = 2 for a
cylinder, and k3 = 1.67 for a sphere); W, relative burning loss of metal; Bi = αS ⁄ λ, Biot number; α, coefficient
of convective heat exchange; λ, thermal conductivity; Fo = ατ ⁄ S2, Fourier number; a, thermal diffusivity; S,
calculated size of the body; Fof, final value of the Fourier number; ω, amount of scale; ε, prescribed accuracy
of the calculation; µ, coefficient characterizing the dynamics of the heating; h and β, constants characterizing
the dynamics of the scaling. Subscripts: m, metal; sur, surface; c, center; f, final value; s, smoke (heating
gases).
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